Oenococcus oeni: advances in molecular genetics
Cosette Grandvalet, Maud Darsonval, Frédérique Julliat, Herve Alexandre

To cite this version:
Cosette Grandvalet, Maud Darsonval, Frédérique Julliat, Herve Alexandre. Oenococcus oeni: advances in molecular genetics. 12th International Symposium on Lactic Acid Bacteria (LAB), Aug 2017, Egmond aan Zee, Netherlands. hal-03150705

HAL Id: hal-03150705
https://hal-agrosup-dijon.archives-ouvertes.fr/hal-03150705
Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Oenococcus oeni: ADVANCES IN MOLECULAR GENETICS

GRANDVALET Cosseté, D. **DARSONVAL Maud**, J. **JULLIAT Frédérique**, ALEXANDRE Hervé

1. Université de Bourgogne Franche-Comté, AgroSup Dijon, UMR Procédés Alimentaires et Microbiologiques (UMR PAM), Dijon, France
2. The James Hutton Institute, Dundee, United Kingdom

ADVANCES IN MOLECULAR GENETICS

Transformation by electroporation

Dicks 1994

L. oenos renamed as Oenococcus oeni

Dicks et al. 1995

Conjugative transfers

Zúñiga et al. 2003

Identification of pOENI-1 plasmids

Favier et al. 2012

Antisense RNA technology to modulate gene expression.

Genetically engineered O. oeni strains

Darsonval et al. 2016

WHAT ELSE?

New shuttle vector to express genes of interest

1. **Expression of esterase genes (estA2 and estA7) in O. oeni**

![Graph showing esterase activity in O. oeni recombinant strains](image)

Concentrations of selected esterases in non-inoculated and post-MID performed in Aligot wine with three O. oeni recombinant strains. An aligot wine (pH 3.1, 13° alcoholic acid, and 11.5% ethanol) partially inoculated from the vineyard of Burgundy. University was collected after 48 h and was adjusted to pH 3.5, then filtered (0.22 µm). Wine was inoculated with three recombinant strains of O. oeni, estA2 and estA7, at 30°C. At the completion of 5 days, each strain was identified and quantified by HPGE-EC-MS. An ANOVA followed by Tukey’s multiple comparison test was conducted. On this data, the mean of triplicate determinations ± standard deviation, ± a unique sample analyzed. Significant differences between inoculated strains were noted (O. oeni estA2, p<0.05), analyzed using one-way ANOVA of three replicates. Tukey’s Multiple Test (p<0.05).

Antisense technology to interfere on gene expression

2. **Antisense RNA expression in O. oeni and impact on Lo18 protein level**

- **pGID052 vector for genetic transfer in O. oeni**

- **Beltramo et al. 2004**

![Graph showing antisense RNA expression on survival under stress conditions](image)

Cultivability tests after heat shock (A), acid shock (pH 5.1) (B) or pH (C). Recombinant strains carrying pGID052 plasmid (--) or carrying plasmid expressing hsp18 antisense (--) were grown at 30°C in M9/PB medium and and exponential phase (O.D. 0.5). Cultures were incubated at 35°C in a water or at 47°C in a water bath. Aeration on agar plates was performed after 24 h of incubation. Significant differences are based on standard error and paired T test. p<0.05, **p<0.001, ***p<0.0001.

IMPEDIMENTS

- Not easily manipulable bacterium
- Few reliable tools and weak transformation efficiency
- Mutation not possible to investigate gene function

CHALLENGES

- To overcome the difficulties of manipulation of the genome of O. oeni due to the lack of genetic tools for gene replacement.
- To overexpress gene in vivo.
- To modulate gene expression in O. oeni and understand their function in vivo.