M. Aeschbacher, C. A. Reinhardt, and G. Zbinden, A rapid cell membrane permeability test using fluorescent dyes and flow cytometry, Cell Biology and Toxicology, vol.2, pp.247-255, 1986.

M. R. Barer, A. S. Kaprelyants, D. H. Weichart, C. R. Harwood, and D. B. Kell, Microbial stress and culturability: Conceptual and operational domains, Microbiology, vol.144, 1998.

P. Breeuwer, J. L. Drocourt, F. M. Rombouts, and T. Abee, Energy-dependent, carriermediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry, Applied and Environmental Microbiology, vol.60, pp.1467-1472, 1994.

P. Breeuwer, J. L. Drocourt, N. Bunschoten, M. H. Zwietering, F. M. Rombouts et al., Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product, Applied and Environmental Microbiology, vol.61, pp.1614-1619, 1995.

B. Buysschaert, B. Byloos, N. Leys, R. Van-houdt, and N. Boon, Reevaluating multicolor flow cytometry to assess microbial viability, Applied Microbiology and Biotechnology, vol.100, issue.21, pp.9037-9051, 2016.

L. B. Chen, I. C. Summerhayes, L. V. Johnson, M. L. Walsh, S. D. Bernal et al., Probing mitochondria in living cells with rhodamine 123, Cold Spring Harbor Symposia on Quantitative Biology, vol.46, pp.141-155, 1982.

H. M. Davey, Life, death, and in-between: Meanings and methods in microbiology, Applied and Environmental Microbiology, vol.77, pp.5571-5576, 2011.

H. M. Davey and P. Hexley, Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide, Environmental Microbiology, vol.13, pp.163-171, 2011.

H. M. Davey and D. B. Kell, Flow cytometry and cell sorting of heterogeneous microbial populations-The importance of singlecell analyses, Microbiological Reviews, vol.60, pp.641-696, 1996.

H. M. Davey, D. B. Kell, D. H. Weichart, and A. S. Kaprelyants, Estimation of microbial viability using flow cytometry. Current Protocols in Cytometry, vol.29, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02544120

D. Deere, J. Shen, G. Vesey, P. Bell, P. Bissinger et al., Flow cytometry and cell sorting for yeast viability assessment and cell selection, Yeast, vol.14, pp.147-160, 1998.

J. P. Diaper, K. Tither, and C. Edwards, Rapid assessment of bacterial viability by flow cytometry, Applied Microbiology and Biotechnology, vol.38, pp.268-272, 1992.

J. Feng, T. Wang, S. Zhang, W. Shi, and Y. Zhang, An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi, Plos One, vol.9, 2014.

D. R. Greenwood and . Peutherer, Medical microbiology, 1992.

L. R. Gudde, M. Hulce, A. H. Largen, and J. D. Franke, Sterol synthesis is essential for viability in the planctomycete bacterium Gemmata obscuriglobus, FEMS Microbiology Letters, vol.366, issue.3, p.19, 2019.

S. Guyot, P. Gervais, M. Young, P. Winckler, J. Dumont et al., Surviving the heat: Heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane, Environmental Microbiology, vol.17, issue.8, pp.2982-2992, 2015.

T. Hattori, The viable count: Quantitative and environmental aspects, 1988.

K. Helmi, F. David, P. Di-martino, M. Jaffrezic, and V. Ingrand, , vol.11, 2018.

, Current Protocols in Cytometry cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency, Journal of Microbiological Methods, vol.152, pp.201-209

M. W. Jernaes and H. B. Steen, Staining of Escherichia coli for flow cytometry: Influx and efflux of ethidium bromide, Cytometry, vol.17, pp.302-309, 1994.

K. H. Jones and J. A. Senft, An improved method to determine cell viability by simultaneous staining with fluorescein diacetatepropidium iodide, Journal of Histochemistry and Cytochemistry, vol.33, pp.77-79, 1985.

A. S. Kaprelyants and D. B. Kell, Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry, Journal of Applied Bacteriology, vol.72, pp.410-422, 1992.

A. S. Kaprelyants, G. V. Mukamolova, H. M. Davey, and D. B. Kell, Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus using flow cytometry and cell sorting, vol.62, pp.1311-1316, 1996.

D. B. Kell, A. S. Kaprelyants, D. H. Weichart, C. L. Harwood, and M. R. Barer, Viability and activity in readily culturable bacteria: A review and discussion of the practical issues, Antonie Van Leeuwenhoek, vol.73, pp.169-187, 1998.

R. López-amorós, J. Comas, and J. Vives-rego, Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol, Applied and Environmental Microbiology, vol.61, pp.2521-2526, 1995.

P. Ludovico, F. Sansonetty, and M. Côrte-real, Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry, Microbiology, vol.147, pp.3335-3343, 2001.

A. C. Martiny, High proportions of bacteria are culturable across major biomes, ISME Journal, vol.4, pp.2125-2128, 2019.

R. D. Meyer, Legionella infections-A review of 5 years of research, Reviews of Infectious Diseases, vol.5, pp.258-278, 1983.

A. M. Nasrabadia, S. An, S. Kwon, and J. Hwang, Investigation of live and dead status of airborne bacteria using UVAPS with LIVE/DEAD® BacLight Kit, Journal of Aerosol Science, vol.115, pp.181-189, 2018.

J. B. Omajali, I. P. Mikheenko, T. W. Overton, M. L. Merroun, and L. E. Macaskie, , 2019.

, Probing the viability of palladium-challenged bacterial cells using flow cytometry, Journal of Chemical Technology and Biotechnology, vol.94, pp.295-301

J. R. Postgate, Viable counts and viability, Methods in Microbiology, vol.1, pp.70149-70150, 1969.

J. R. Postgate, Death in microbes and macrobes, The survival of vegetative microbes, pp.1-19, 1976.

H. S. Rye, S. Yue, D. E. Wemmer, M. A. Queseda, R. P. Haugland et al., Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications, Nucleic Acids Research, vol.20, pp.2803-2812, 1992.

H. S. Rye, J. M. Dabora, M. A. Queseda, R. A. Mathies, and A. N. Glazer, Fluorometric assay using dimeric dyes for double-and singlestranded DNA and RNA with picogram sensitivity, Analytical Biochemistry, vol.208, pp.144-150, 1993.

H. S. Rye, S. Yue, M. A. Quesada, R. P. Haugland, R. A. Mathies et al., Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner, Methods in Enzymology, vol.217, issue.93, p.17080, 1993.

D. T. Sasaki, S. E. Dumas, and E. G. Engleman, Discrimination of viable and non-viable cells using propidium iodide in two color immunofluorescence, Cytometry, vol.8, pp.413-420, 1987.

H. M. Shapiro, Practical flow cytometry, 2003.

L. Shi, S. Gunther, T. Hubschmann, L. Y. Wick, H. Harms et al., Limits of propidium iodide as a cell viability indicator for environmental bacteria, Cytometry, vol.71, pp.592-598, 2007.

C. R. Steadman-tyler, C. K. Sanders, R. S. Erickson, T. Dale, S. N. Twary et al., Functional and phenotypic flow cytometry characterization of Picochlorum soloecismus, Algal Research, vol.43, p.101614, 2019.

A. D. Steen, A. Crits-christoph, P. Carini, K. M. Deangelis, N. Fierer et al., High proportions of bacteria and archaea across most biomes remain uncultured, ISME Journal, vol.13, issue.12, pp.3126-3130, 2019.

S. D. Thakur, M. Obradovic, J. R. Dillon, S. H. Ng, and H. L. Wilson, Development of flow cytometry based adherence assay for Neisseria gonorrhoeae using 5 -carboxyfluorosceinsuccidyl ester, BMC Microbiology, vol.19, p.67, 2019.

D. Vanhauteghem, K. Audenaert, K. Demeyere, F. Hoogendoorn, G. P. Janssens et al., Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle, Journal of Cellular Physiology, vol.14, issue.2, pp.72-81, 1985.

E. Zahavy, S. Rotem, D. Gur, R. Aloni-grinstein, M. Aftalion et al., Rapid antibiotic susceptibility determination for Yersinia pestis using flow cytometry spectral intensity ratio (SIR) fluorescence analysis, Journal of Fluorescence, vol.28, issue.5, pp.1151-1161, 2018.

. Key-references and . Buysschaert, See above. Optimization of staining protocols for flow cytometry applications to assess microbial viability, 2016.

. Davey, See above. Provides definitions of microbial viability and direction in the choice and interpretation of viability testing methods, 2011.

H. M. Shapiro, See above, 2003.

, Classical reference that describes the science and wide range of applications of flow cytometry

G. Davey,