Protein Thermal Denaturation of Beef Muscle: Neutron Imaging and spectroscopies
Simone Scussat, Elias Bou-Maroun, Christine Fant, Philippe Cayot, Camille Loupiac

To cite this version:

HAL Id: hal-02359464
https://hal-agrosup-dijon.archives-ouvertes.fr/hal-02359464
Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Protein Thermal Denaturation of Beef Muscle: Neutron Imaging and Spectroscopies

Scussat S.¹², Bou-Maroun E.¹, Fant C.¹, Cayot P.¹, Loupiac C.¹²

Equipe PAPC, UMR PAM, Université de Bourgogne – AgroSup Dijon, Dijon, France.

¹Laboratoire Léon Brillouin, CEA – CNRS, CEA Saclay, Gif-sur-Yvette, France.

Microtechnique and Agrimip, financed by the French State and the Franche-Comté Region as part of The Investments for the Future Programme managed by Bpifrance.

Open Food System is a research project supported by Vitagora, Cap Digital, Imaginove, Aquimer, Microtechnique and Agrimip, financed by the French State and the Franche-Comté Region as part of The Investments for the Future Programme managed by Bpifrance.

Acknowledgement:
Open Food System is a research project supported by Vitagora, Cap Digital, Imaginove, Aquimer, Microtechnique and Agrimip, financed by the French State and the Franche-Comté Region as part of The Investments for the Future Programme managed by Bpifrance.

Context of Project

Open Food System is an academic and industrial projet with the purpose to follow meat cooking without any intrusion.

It concerns two main parts

1) Sensor Development
 - a) Spectroscopic Sensor
 - Visible / InfraRed
 - Fluorescence
 - b) Olfactometer Sensor

2) Biochemistry of Muscle Cooking
 - Food Science Approach:
 - Macroscopic scale
 - Sensory Analysis
 - Colour
 - Texture
 - Flavour
 - Our Approach:
 - Microscopic scale (Neutron Imaging)
 - Molecular scale (Spectroscopies)

Neutron Imaging during Cooking

Neutron Imaging was used to follow muscle morphology changes (protein contraction) and juice migration inside the sample (through the evolution of Attenuation Coefficient).

Spectroscopies: IR and Fluorescence

InfraRed and Fluorescence were carried out on muscle samples with the purpose to detect the spectroscopic signature of proteins at a particular cooking degree.

Calorimetry
Used to determine the cooking temperature parameters for the samples

InfraRed Spectra
Principal Component Analysis - InfraRed
Separation on Cooking Degree:
- Beef: LT ≠ MT and HT

Fluorescence Spectra (ex. 291 nm)
Principal Component Analysis - Fluorescence
Separation on Cooking Degree:
- Beef: LT ≠ MT and HT

Future

Microscopic Scale on Neutron Imaging:
- Coupling Neutron Imaging with Surface Spectroscopies (IR and Fluorescence) during heating Process

Molecular Scale:
- Myosin Thermal Denaturation depending on ionic strength (KCl)
- Structural Studies by IR, Fluorescence and SANS spectroscopy

References

Chen et al., 322 (5907), 1494-1497 (Science)