C. W. Grant, S. H. Wu, and H. M. Mcconnell, Lateral phase separations in binary lipid mixtures: correlation between spin label and freeze-fracture electron microscopic studies, Biochim. Biophys. Acta, vol.363, pp.151-158, 1974.

B. R. Lentz, Y. Barenholz, and T. E. Thompson, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes, Biochemistry, vol.15, pp.4529-4537, 1976.

M. C. Phillips, V. B. Kamat, and D. Chapman, The interaction of cholesterol with the sterol free lipids of plasma membranes, Chem. Phys. Lipids, vol.4, pp.409-417, 1970.

E. J. Shimshick and H. M. Mcconnell, Lateral phase separation in phospholipid membranes, Biochemistry, vol.12, pp.2351-2360, 1973.

O. Weso?owska, K. Michalak, J. Maniewska, and A. B. Hendrich, Giant unilamellar vesicles: a perfect tool to visualize phase separation and lipid rafts in model systems, Acta Biochim. Pol, vol.56, pp.33-39, 2009.

C. Gebhardt, H. Gruler, and E. Sackmann, On domain structure and local curvature in lipid bilayers and biological membranes, Z Naturforsch. C, vol.32, pp.581-596, 1977.

C. F. Schmidt, Y. Barenholz, and T. E. Thompson, A nuclear magnetic resonance study of sphingomyelin in bilayer systems, Biochemistry, vol.16, pp.2649-2656, 1977.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, vol.327, pp.46-50, 2010.

T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, vol.425, pp.821-824, 2003.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi et al., Lipid rafts reconstituted in model membranes, Biophys. J, vol.80, pp.1417-1428, 2001.

D. Scherfeld, N. Kahya, and P. Schwille, Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol, Biophys. J, vol.85, pp.3758-3768, 2003.

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes, Biophys. J, vol.81, pp.1486-1500, 2001.

S. L. Veatch and S. L. Keller, Organization in lipid membranes containing cholesterol, Phys. Rev. Lett, vol.89, p.268101, 2002.

S. L. Veatch and S. L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys. J, vol.85, pp.3074-3083, 2003.

P. J. Quinn, A lipid matrix model of membrane raft structure, Prog. Lipid Res, vol.49, pp.390-406, 2010.

P. J. Quinn and C. Wolf, The liquid-ordered phase in membranes, Biochim. Biophys. Acta, vol.1788, pp.33-46, 2009.

D. A. Mannock, R. N. Lewis, T. P. Mcmullen, and R. N. Mcelhaney, The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes, Chem. Phys. Lipids, vol.163, pp.403-448, 2010.

K. Kim, S. Q. Choi, Z. A. Zell, T. M. Squires, and J. A. Zasadzinski, Effect of cholesterol nanodomains on monolayer morphology and dynamics, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.3054-3060, 2013.

M. L. Frazier, J. R. Wright, A. Pokorny, and P. F. Almeida, Investigation of domain formation in sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations, Biophys. J, vol.92, pp.2422-2433, 2007.

J. Henriksen, A. C. Rowat, E. Brief, Y. W. Hsueh, J. L. Thewalt et al., Universal behavior of membranes with sterols, Biophys. J, vol.90, pp.1639-1649, 2006.

N. Jiménez-rojo, A. B. García-arribas, J. Sot, A. Alonso, and F. M. Goñi, Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity, Biochim. Biophys. Acta, vol.1838, pp.456-464, 2014.

M. Lönnfors, J. P. Doux, J. A. Killian, T. K. Nyholm, and J. P. Slotte, Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order, Biophys. J, vol.100, pp.2633-2641, 2011.

S. N. Pinto, F. Fernandes, A. Fedorov, A. H. Futerman, L. C. Silva et al., A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains, Biochim. Biophys. Acta, vol.1828, pp.2099-2110, 2013.

B. Ramstedt and J. P. Slotte, Sphingolipids and the formation of sterol-enriched ordered membrane domains, Biochim. Biophys. Acta, vol.1758, pp.1945-1956, 2006.

S. Sonnino and A. Prinetti, Lipids and membrane lateral organization, Front. Physiol, vol.1, p.153, 2010.

F. Furt, B. Lefebvre, J. Cullimore, J. J. Bessoule, and S. Mongrand, Plant lipid rafts: fluctuat nec mergitur, Plant Signal. Behav, vol.2, pp.508-511, 2007.

D. A. Guo, M. Venkatramesh, and W. D. Nes, Developmental regulation of sterol biosynthesis in Zea-Mays, Lipids, vol.30, pp.203-219, 1995.

H. Schaller, New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol. Biochem, vol.42, pp.465-476, 2004.

S. Grille, A. Zaslawski, S. Thiele, J. Plat, and D. Warnecke, The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals, Prog. Lipid Res, vol.49, pp.262-288, 2010.

E. Heinz, Plant Glycolipids: Structure, Isolation and Analysis, vol.3, pp.211-332, 1996.

N. V. Kovganko and Z. N. Kashkan, Sterol glycosides and acylglycosides, Chem. Nat. Compd, vol.35, pp.479-497, 1999.

B. Lefebvre, F. Furt, M. A. Hartmann, L. V. Michaelson, J. P. Carde et al., Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system, Plant Physiol, vol.144, pp.402-418, 2007.

Z. A. Wojciechowski, Biochemistry of Phytosterol Conjugates, 1991.

V. Wewer, I. Dombrink, K. Vom-dorp, and P. Dörmann, Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry, J. Lipid Res, vol.52, pp.1039-1054, 2011.

K. Schrick, S. Shiva, J. C. Arpin, N. Delimont, G. Isaac et al., Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry, Lipids, vol.47, pp.185-193, 2012.

M. S. Webb, T. C. Irving, and P. L. Steponkus, Effects of plant sterols on the hydration and phase behavior of DOPE/DOPC mixtures, Biochim. Biophys. Acta, vol.1239, pp.226-238, 1995.

D. A. Brown and J. K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, vol.68, pp.533-544, 1992.

J. E. Markham, J. Li, E. B. Cahoon, and J. G. Jaworski, Separation and identification of major plant sphingolipid classes from leaves, J. Biol. Chem, vol.281, pp.22684-22694, 2006.

J. L. Cacas, F. Furt, M. Le-guédard, J. M. Schmitter, C. Buré et al., Lipids of plant membrane rafts, Prog. Lipid Res, vol.51, pp.272-299, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647225

H. E. Carter, R. H. Gigg, J. H. Law, T. Nakayama, and E. Weber, Biochemistry of the sphingolipides. XI. Structure of phytoglycolipide, J. Biol. Chem, vol.233, pp.1309-1314, 1958.

H. E. Carter and J. L. Koob, Sphingolipids in bean leaves (Phaseolus vulgaris), J. Lipid Res, vol.10, pp.363-369, 1969.

T. C. Hsieh, K. Kaul, R. A. Laine, and R. L. Lester, Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2-deoxy-2-acetamido-D-glucopyranosyl(?134)-D-glucuronopyranosyl-(?132)myoinositol-1-O-phosphoceramide, Biochemistry, vol.17, pp.3575-3581, 1978.

T. C. Hsieh, R. L. Lester, and R. A. Laine, Glycophosphoceramides from plants: purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids, J. Biol. Chem, vol.256, pp.7747-7755, 1981.

K. Kaul and R. L. Lester, Characterization of inositol-containing phosphosphingolipids from tobacco leaves: isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide, Plant Physiol, vol.55, pp.120-129, 1975.

S. D. Spassieva, J. E. Markham, and J. Hille, The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death, Plant J, vol.32, pp.561-572, 2002.

P. Sperling, S. Franke, S. Lüthje, and E. Heinz, Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?, Plant Physiol. Biochem, vol.43, pp.1031-1038, 2005.

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat. Rev. Mol. Cell Biol, vol.9, pp.139-150, 2008.

M. O. Pata, Y. A. Hannun, and C. K. Ng, Plant sphingolipids: decoding the enigma of the Sphinx, New Phytol, vol.185, pp.611-630, 2010.

W. Wang, X. Yang, S. Tangchaiburana, R. Ndeh, J. E. Markham et al., An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis, Plant Cell, vol.20, pp.3163-3179, 2008.

J. L. Cacas, C. Buré, F. Furt, J. P. Maalouf, A. Badoc et al., Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity, Phytochemistry, vol.96, pp.191-200, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02644251

C. Buré, J. L. Cacas, S. Mongrand, and J. M. Schmitter, Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry, Anal. Bioanal. Chem, vol.406, pp.995-1010, 2014.

A. L. Obaid, L. M. Loew, J. P. Wuskell, and B. M. Salzberg, Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis, J. Neurosci. Methods, vol.134, pp.179-190, 2004.

L. Jin, A. C. Millard, J. P. Wuskell, H. A. Clark, and L. M. Loew, Cholesterol-enriched lipid domains can be visualized by di-4-ANEP-PDHQ with linear and nonlinear optics, Biophys. J, vol.89, pp.4-06, 2005.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu et al., Characterization and application of a new optical probe for membrane lipid domains, Biophys. J, vol.90, pp.2563-2575, 2006.

C. Buré, J. L. Cacas, F. Wang, K. Gaudin, F. Domergue et al., Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry, Rapid Commun. Mass Spectrom, vol.25, pp.3131-3145, 2011.

M. I. Angelova, S. Soleau, P. Meleard, J. F. Faucon, and P. Bothorel, Preparation of giant vesicles by external AC electric fields, Prog. Colloid Polym. Sci, vol.89, pp.127-131, 1992.

D. S. Dimitrov and M. I. Angelova, Lipid swelling and liposome electroformation mediated by electric fields, Bioelectrochem. Bioenerg, vol.19, pp.323-333, 1988.

F. M. Menger and M. I. Angelova, Giant vesicles: imitating the cytological processes of cell membranes, Acc. Chem. Res, vol.31, pp.789-797, 1998.

R. C. Macdonald, R. I. Macdonald, B. P. Menco, K. Takeshita, N. K. Subbarao et al., Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochim. Biophys. Acta, vol.1061, pp.297-303, 1991.

N. K. Subbarao, R. I. Macdonald, K. Takeshita, and R. C. Macdonald, Characteristics of spectrin-induced leakage of extruded, phosphatidylserine vesicles, Biochim. Biophys. Acta, vol.1063, pp.147-154, 1991.

A. C. Millard, L. Jin, M. D. Wei, J. P. Wuskell, A. Lewis et al., Sensitivity of second harmonic generation from styryl dyes to transmembrane potential, Biophys. J, vol.86, pp.1169-1176, 2004.

D. M. Owen and K. Gaus, Optimized time-gated generalized polarization imaging of Laurdan and di-4-ANEPPDHQ for membrane order image contrast enhancement, Microsc. Res. Tech, vol.73, pp.618-622, 2010.

D. M. Owen, C. Rentero, A. Magenau, A. Abu-siniyeh, and K. Gaus, Quantitative imaging of membrane lipid order in cells and organisms, Nat. Protoc, vol.7, pp.24-35, 2012.

L. Bonneau, P. Gerbeau-pissot, D. Thomas, C. Der, J. Lherminier et al., Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells, Biochim. Biophys. Acta, vol.1798, pp.2150-2159, 2010.

J. Dinic, P. Ashrafzadeh, and I. Parmryd, Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains, Biochim. Biophys. Acta, vol.1828, pp.1102-1111, 2013.

J. Dinic, H. Biverståhl, L. Mäler, and I. Parmryd, Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing, Biochim. Biophys. Acta, vol.1808, pp.298-306, 2011.

P. Gerbeau-pissot, C. Der, D. Thomas, I. A. Anca, K. Grosjean et al., Modification of plasma membrane organization in tobacco cells elicited by cryptogein, Plant Physiol, vol.164, pp.273-286, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638760

P. Liu, R. L. Li, L. Zhang, Q. L. Wang, K. Niehaus et al., Lipid microdomain polarization is required for NA-DPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth, Plant J, vol.60, pp.303-313, 2009.

Y. Roche, P. Gerbeau-pissot, B. Buhot, D. Thomas, L. Bonneau et al., Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts, FASEB J, vol.22, pp.3980-3991, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02657476

Y. Roche, A. S. Klymchenko, P. Gerbeau-pissot, P. Gervais, Y. Mély et al., Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes, Biochim. Biophys. Acta, vol.1798, pp.1601-1607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508244

M. J. Uline and I. Szleifer, Mode specific elastic constants for the gel, liquid-ordered, and liquid-disordered phases of DPPC/DOPC/cholesterol model lipid bilayers, Faraday Discuss, vol.161, pp.273-303, 2013.

J. De-joannis, P. S. Coppock, F. Yin, M. Mori, A. Zamorano et al., Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: implications for liquid-ordered/liquid-disordered phase coexistence, J. Am. Chem. Soc, vol.133, pp.3625-3634, 2011.

P. F. Almeida, A simple thermodynamic model of the liquidordered state and the interactions between phospholipids and cholesterol, Biophys. J, vol.100, pp.420-429, 2011.

D. Marsh, Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams, Biochim. Biophys. Acta, vol.1798, pp.688-699, 2010.

J. A. Clarke, A. J. Heron, J. M. Seddon, and R. V. Law, The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and x-ray diffraction study, Biophys. J, vol.90, pp.2383-2393, 2006.

J. Ouimet and M. Lafleur, Hydrophobic match between cholesterol and saturated fatty acid is required for the formation of lamellar liquid ordered phases, Langmuir, vol.20, pp.7474-7481, 2004.

S. N. Ahmed, D. A. Brown, and E. London, On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochemistry, vol.36, pp.10944-10953, 1997.

H. Reinl, T. Brumm, and T. M. Bayerl, Changes of the physical properties of the liquid-ordered phase with temperature in binary mixtures of DPPC with cholesterol: a H-NMR, FT-IR, DSC, and neutron scattering study, Biophys. J, vol.61, pp.1025-1035, 1992.

Y. Fujino, M. Ohnishi, and S. Ito, Molecular species of ceramide and mono-, di-, tri-, and tetraglycosylceramide in bran and endosperm of rice grains, Agric. Biol. Chem, vol.49, pp.2753-2762, 1985.

M. N. Islam, J. P. Chambers, C. K. Ng, and .. , Lipid profiling of the model temperate grass, Brachypodium distachyon, 2012.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy, J. Biol. Chem, vol.278, pp.28109-28115, 2003.

F. S. Ariola, Z. Li, C. Cornejo, R. Bittman, and A. A. Heikal, Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative, Biophys. J, vol.96, pp.2696-2708, 2009.

L. F. Aguilar, J. A. Pino, M. A. Soto-arriaza, F. J. Cuevas, S. Sánchez et al., Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes, PLoS One, vol.7, p.40254, 2012.

G. N. Ranadive, L. , and A. K. , Sterol-phospholipid interaction in model membranes: role of C5-C6 double bond in cholesterol, Biochemistry, vol.26, pp.2426-2431, 1987.

W. Stillwell and S. R. Wassall, Interactions of retinoids with phospholipid membranes: optical spectroscopy, Methods Enzymol, vol.189, pp.373-382, 1990.

I. Schuler, A. Milon, Y. Nakatani, G. Ourisson, A. M. Albrecht et al., Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers, Proc. Natl. Acad. Sci. U.S.A, vol.88, pp.6926-6930, 1991.

R. A. Demel, K. R. Bruckdorfer, and L. L. Van-deenen, The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb ?, Biochim. Biophys. Acta, vol.255, pp.321-330, 1972.

R. A. Demel, K. R. Bruckdorfer, and L. L. Van-deenen, Structural requirements of sterols for the interaction with lecithin at the air water interface, Biochim. Biophys. Acta, vol.255, pp.311-320, 1972.

A. J. Verkleij, B. De-kruijff, W. F. Gerritsen, R. A. Demel, L. L. Van-deenen et al., Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B, Biochim. Biophys. Acta, vol.291, pp.577-581, 1973.

K. K. Halling and J. P. Slotte, Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization, Biochim. Biophys. Acta, vol.1664, pp.161-171, 2004.

K. R. Bruckdorfer, J. M. Graham, and C. Green, The incorporation of steroid molecules into lecithin sols, ?-lipoproteins and cellular membranes, Eur. J. Biochem, vol.4, pp.512-518, 1968.

P. A. Edwards and C. Green, Incorporation of plant sterols into membranes and its relation to sterol absorption, FEBS Lett, vol.20, pp.97-99, 1972.

I. Schuler, G. Duportail, N. Glasser, P. Benveniste, and M. A. Hartmann, Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study, Biochim. Biophys. Acta, vol.1028, pp.82-88, 1990.

C. Rujanavech, P. A. Henderson, and D. F. Silbert, Influence of sterol structure on phospholipid phase behavior as detected by parinaric acid fluorescence spectroscopy, J. Biol. Chem, vol.261, pp.7204-7214, 1986.

M. A. Hartmann, Plant sterols and the membrane environment, Trends Plant Sci, 1998.

M. F. Quartacci, O. Glisi?, B. Stevanovi?, and F. Navari-izzo, Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration, J. Exp. Bot, vol.53, pp.2159-2166, 2002.

L. López-pérez, . Martínez-ballesta, C. Mdel, C. Maurel, and M. Carvajal, Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity, Phytochemistry, vol.70, pp.492-500, 2009.

L. Arnqvist, M. Persson, L. Jonsson, P. C. Dutta, and F. Sitbon, Overexpression of CYP710A1 and CYP710A4 in transgenic Arabidopsis plants increases the level of stigmasterol at the expense of sitosterol, Planta, vol.227, pp.309-317, 2008.

K. Wang, M. Senthil-kumar, C. M. Ryu, L. Kang, and K. S. Mysore, Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast, Plant Physiol, vol.158, pp.1789-1802, 2012.

R. Benz, C. , and D. , Influence of sterols on ion transport through lipid bilayer membranes, Biochim. Biophys. Acta, vol.506, pp.265-280, 1978.

A. H. Berglund, M. F. Quartacci, L. Calucci, F. Navari-izzo, C. Pinzino et al., Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles, Biochim. Biophys. Acta, vol.1564, pp.466-472, 2002.

M. Uemura, R. A. Joseph, and P. L. Steponkus, Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions), Plant Physiol, vol.109, pp.15-30, 1995.

M. Uemura and P. L. Steponkus, A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance, Plant Physiol, vol.104, pp.479-496, 1994.

J. B. Mudd and T. T. Mcmanus, Effect of steryl glycosides on the phase transition of dipalmitoyl lecithin, Plant Physiol, vol.65, pp.78-80, 1980.

J. P. Palta, B. D. Whitaker, and L. S. Weiss, Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of solanum species, Plant Physiol, vol.103, pp.793-803, 1993.

D. V. Lynch and P. L. Steponkus, Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma), Plant Physiol, vol.83, pp.761-767, 1987.

A. Minami, A. Furuto, and M. Uemura, Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation, Plant Signal. Behav, vol.5, pp.1115-1118, 2010.

T. Parasassi, E. Gratton, W. M. Yu, P. Wilson, L. et al., Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes, Biophys. J, vol.72, pp.2413-2429, 1997.

M. M. Stevens, A. R. Honerkamp-smith, and S. L. Keller, Solubility limits of cholesterol, lanosterol, ergosterol, stigmasterol, and ?-sitosterol in electroformed lipid vesicles, Soft Matter, vol.6, pp.5882-5890, 2010.

J. G. Beck, D. Mathieu, C. Loudet, S. Buchoux, and E. J. Dufourc, Plant sterols in "rafts": a better way to regulate membrane thermal shocks, FASEB J, vol.21, pp.1714-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01564162

A. Minami, M. Fujiwara, A. Furuto, Y. Fukao, T. Yamashita et al., Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation, Plant Cell Physiol, vol.50, pp.341-359, 2009.

S. Mongrand, J. Morel, J. Laroche, S. Claverol, J. P. Carde et al., Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, J. Biol. Chem, vol.279, pp.36277-36286, 2004.

P. Janich and D. Corbeil, GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells, FEBS Lett, vol.581, pp.1783-1787, 2007.

D. Lingwood, J. Ries, P. Schwille, and K. Simons, Plasma membranes are poised for activation of raft phase coalescence at physiological temperature, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.10005-10010, 2008.

E. Sezgin, I. Levental, M. Grzybek, G. Schwarzmann, V. Mueller et al., Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes, Biochim. Biophys. Acta, vol.1818, pp.1777-1784, 2012.

Y. Barenholz and T. E. Thompson, Sphingomyelins in bilayers and biological membranes, Biochim. Biophys. Acta, vol.604, pp.129-158, 1980.

M. Gandhavadi, D. Allende, A. Vidal, S. A. Simon, and T. J. Mcintosh, Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts, Biophys. J, vol.82, pp.1469-1482, 2002.

I. Pascher, Molecular arrangements in sphingolipids: conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability, Biochim. Biophys. Acta, vol.455, pp.433-451, 1976.

E. Mombelli, R. Morris, W. Taylor, and F. Fraternali, Hydrogenbonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study, Biophys. J, vol.84, pp.1507-1517, 2003.

S. A. Pandit, S. Vasudevan, S. W. Chiu, R. J. Mashl, E. Jakobsson et al., Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation, Biophys. J, vol.87, pp.1092-1100, 2004.

M. Masserini and E. Freire, Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GM1 with homogeneous ceramide chain length, Biochemistry, vol.25, pp.1043-1049, 1986.

M. Masserini, P. Palestini, and E. Freire, Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides, Biochemistry, vol.28, pp.5029-5034, 1989.

M. Masserini, P. Palestini, B. Venerando, A. Fiorilli, D. Acquotti et al., Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase, Biochemistry, vol.27, pp.7973-7978, 1988.

L. A. Bagatolli and O. G. Mouritsen, Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front, Plant Sci, vol.4, p.457, 2013.

A. Kusumi and K. Suzuki, Toward understanding the dynamics of membrane-raft-based molecular interactions, Biochim. Biophys. Acta, vol.1746, pp.234-251, 2005.

A. Kusumi, K. G. Suzuki, R. S. Kasai, K. Ritchie, and T. K. Fujiwara, Hierarchical mesoscale domain organization of the plasma membrane, Trends Biochem. Sci, vol.36, pp.604-615, 2011.