Protection of Active Aroma Compound against Moisture and Oxygen by Encapsulation in Biopolymeric Emulsion-Based Edible Films

Abstract : Edible films made of ι-carrageenans display interesting advantages: good mechanical properties, stabilization of emulsions, and reduction of oxygen transfers. Moreover, the addition of lipids to ι-carrageenan-based films to form emulsified films decreases the transfer of water vapor and can be considered to encapsulate active molecules as flavors. The aim of this study was to better understand the influence of the composition and the structure of the carrageenan-based film matrices on its barrier properties and thus on its capacity to encapsulate and to protect active substances encapsulated. Granulometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy characterizations of films with or without flavor and/or fat showed that the flavor compound modifies the film structure because of interactions with the ι-carrageenan chains. The study of the water vapor permeability (WVP), realized at 25 and 35 °C and for three relative humidity differentials (30–100%, 30–84%, 30–75%), showed that the flavor compound increases significantly the WVP, especially for the weaker gradients, but has no effect on the oxygen permeability. This study brings new understanding of the role of carrageenan as a film matrix and on its capacity to protect encapsulated flavors.
Document type :
Journal articles
Complete list of metadatas

https://hal-agrosup-dijon.archives-ouvertes.fr/hal-02292027
Contributor : Administrateur Agrosupdijon <>
Submitted on : Thursday, September 19, 2019 - 1:11:43 PM
Last modification on : Friday, September 20, 2019 - 1:00:47 AM

Identifiers

Citation

Alicia Hambleton, Frédéric Debeaufort, Laurent Beney, Thomas Karbowiak, Andrée Voilley. Protection of Active Aroma Compound against Moisture and Oxygen by Encapsulation in Biopolymeric Emulsion-Based Edible Films. Biomacromolecules, American Chemical Society, 2008, 9 (3), pp.1058-1063. ⟨10.1021/bm701230a⟩. ⟨hal-02292027⟩

Share

Metrics

Record views

44