S. M. Abmayr and G. K. Pavlath, Myoblast fusion: lessons from flies and mice, Development, vol.139, pp.641-656, 2012.

P. S. Aguilar, M. K. Baylies, and A. Fleissner, Genetic basis of cell -cell fusion mechanisms, Trends Genet, vol.29, pp.427-437, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00847175

C. F. Bentzinger, Y. X. Wang, and M. A. Rudnicki, Building muscle: molecular regulation of myogenesis, Cold Spring Harb. Perspect. Biol, vol.4, p.8342, 2012.

A. Briolay, R. Jaafar, and G. Nemoz, Myogenic differentiation and lipid-raft composition of L6 skeletal muscle cells are modulated by PUFAs, Biochim. Biophys. Acta, vol.1828, pp.602-613, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917344

M. Buckingham, Skeletal muscle formation in vertebrates, Curr. Opin. Genet. Dev, vol.11, pp.440-448, 2001.

L. V. Chernomordik and M. M. Kozlov, Membrane hemifusion: crossing a chasm in two leaps, Cell, vol.123, pp.375-382, 2005.

L. V. Chernomordik, S. S. Vogel, and A. Sokoloff, Lysolipids reversibly inhibit Ca 2+ -, GTP-and pH-dependent fusion of biological membranes, FEBS Lett, vol.318, pp.71-76, 1993.

M. Ciechonska, D. , and R. , Lysophosphatidylcholine reversibly arrests pore expansion during syncytium formation mediated by diverse viral fusogens, J. Virol, vol.88, pp.6528-6531, 2014.

K. R. Doherty, A. Cave, and D. B. Davis, Normal myoblast fusion requires myoferlin, Development, vol.132, pp.5565-5575, 2005.

V. Georgiadis, H. J. Stewart, and H. J. Pollard, Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration, Dev. Dyn, vol.236, pp.1014-1024, 2007.

M. Gotoh, Y. Fujiwara, and J. Yue, Controlling cancer through the autotaxin -lysophosphatidic acid receptor axis, Biochem. Soc. Trans, vol.40, pp.31-36, 2012.

H. Guillou, D. Zadravec, and P. G. Martin, The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice, Prog. Lipid Res, vol.49, pp.186-199, 2010.

A. E. Hochreiter-hufford, C. S. Lee, and J. M. Kinchen, Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion, Nature, vol.497, pp.263-267, 2013.

V. Horsley, B. B. Friday, and S. Matteson, Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway, J. Cell Biol, vol.153, pp.329-338, 2001.

M. Ikeda, Y. Kanao, and M. Yamanaka, Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis, FEBS Lett, vol.582, pp.2435-2440, 2008.

H. Jungbluth, C. Wallgren-pettersson, and J. Laporte, Centronuclear (myotubular) myopathy, Orphanet J, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350775

A. Kihara, Very long-chain fatty acids: elongation, physiology and related disorders, J. Biochem, vol.152, pp.387-395, 2012.

A. Kihara, H. Sakuraba, and M. Ikeda, Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation, J. Biol. Chem, vol.283, pp.11199-11209, 2008.

M. Laurin, N. Fradet, and A. Blangy, The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo, Proc. Natl Acad. Sci. USA, vol.105, pp.15446-15451, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02385094

J. Lee, H. Tachibana, and Y. Morinaga, Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids, Life Sci, vol.84, pp.415-420, 2009.

E. Leikina, K. Melikov, and S. Sanyal, Extracellular annexins and dynamin are important for sequential steps in myoblast fusion, J. Cell Biol, vol.200, pp.109-123, 2013.

K. C. Lenhart, A. L. Becherer, and J. Li, GRAF1 promotes ferlindependent myoblast fusion, Dev. Biol, vol.393, pp.298-311, 2014.

X. Lin, X. Yang, and Q. Li, Protein tyrosine phosphatase-like A regulates myoblast proliferation and differentiation through MyoG and the cell cycling signaling pathway, Mol. Cell. Biol, vol.32, pp.297-308, 2012.

M. Maurer, J. Mary, and L. Guillaud, Centronuclear myopathy in Labrador retrievers: a recent founder mutation in the PTPLA Gene has rapidly disseminated worldwide, PLoS One, vol.7, p.46408, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01117504

F. R. Maxfield and I. Tabas, Role of cholesterol and lipid organization in disease, Nature, vol.438, pp.612-621, 2005.

D. P. Millay, J. R. O'rourke, and L. B. Sutherland, Myomaker is a membrane activator of myoblast fusion and muscle formation, Nature, vol.499, pp.301-305, 2013.

D. P. Millay, L. B. Sutherland, and R. Bassel-duby, Myomaker is essential for muscle regeneration, Genes Dev, vol.28, pp.1641-1646, 2014.

J. P. Miller, R. S. Lo, and A. Ben-hur, Large-scale identification of yeast integral membrane protein interactions, Proc. Natl Acad. Sci. USA, vol.102, pp.12123-12128, 2005.

D. Molino, E. Van-der-giessen, and L. Gissot, Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis, Biochim. Biophys. Acta, vol.1842, pp.1422-1430, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204151

E. Muhammad, O. Reish, and Y. Ohno, Congenital myopathy is caused by mutation of HACD1, Hum. Mol. Genet, vol.22, pp.5229-5236, 2013.

M. Nakanishi, E. Hirayama, K. , and J. , Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells, Cell Biol. Int, vol.25, pp.971-979, 2001.

J. R. Nance, J. J. Dowling, and E. M. Gibbs, Congenital myopathies: an update, Curr. Neurol. Neurosci. Rep, vol.12, pp.165-174, 2012.

K. North, What's new in congenital myopathies?, Neuromuscul. Disord, vol.18, pp.433-442, 2008.

Y. Ohno, S. Suto, and M. Yamanaka, ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis, Proc. Natl Acad. Sci. USA, vol.107, pp.18439-18444, 2010.

M. Pelé, L. Tiret, and J. Kessler, SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs, Hum. Mol. Genet, vol.14, pp.1417-1427, 2005.

C. R. Pierson, P. B. Agrawal, and J. Blasko, Myofiber size correlates with MTM1 mutation type and outcome in X-linked myotubular myopathy, Neuromuscul. Disord, vol.17, pp.562-568, 2007.

J. Prives and M. Shinitzky, Increased membrane fluidity precedes fusion of muscle cells, Nature, vol.268, pp.761-763, 1977.

G. Ravenscroft, N. G. Laing, and C. G. Bönnemann, Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus, Brain, vol.138, pp.246-268, 2015.

M. Reporter and D. Raveed, Plasma membranes: isolation from naturally fused and lysolecithin-treated muscle cells, Science, vol.181, pp.863-865, 1973.

N. B. Romero, Centronuclear myopathies: a widening concept, Neuromuscul. Disord, vol.20, pp.223-228, 2010.

G. Schmitz and K. Ruebsaamen, Metabolism and atherogenic disease association of lysophosphatidylcholine, Atherosclerosis, vol.208, pp.10-18, 2010.

R. Schneiter, B. Brugger, and C. M. Amann, Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes, Biochem. J, vol.381, pp.941-949, 2004.

S. Teng, D. Stegner, and Q. Chen, Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration, Mol. Biol. Cell, vol.26, pp.506-517, 2015.

L. Tiret, S. Blot, and J. Kessler, The cnm locus, a canine homologue of human autosomal forms of centronuclear myopathy, maps to chromosome 2, Hum. Genet, vol.113, pp.297-306, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02670106

P. L. Yeagle, F. T. Smith, and J. E. Young, Inhibition of membrane fusion by lysophosphatidylcholine, Biochemistry, vol.33, pp.1820-1827, 1994.