E. Oerke, Crop losses to pests, J. Agric. Sci, vol.144, pp.31-43, 2006.

C. Timmermann, R. Gerhards, and W. Kühbauch, The economic impact of site-specific weed control, Precis. Agric, vol.4, pp.249-260, 2003.

M. Weis, C. Gutjahr, V. R. Ayala, R. Gerhards, C. Ritter et al., Precision farming for weed management, vol.60, pp.171-181, 2008.

W. S. Lee, D. Slaughter, and D. Giles, Robotic weed control system for tomatoes, Precis. Agric, vol.1, pp.95-113, 1999.

R. Gerhards and H. Oebel, Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying, Weed Res, vol.46, pp.185-193, 2006.

J. V. Stafford and B. Ambler, In-field location using GPS for spatially variable field operations, Comput. Electron. Agric, vol.11, pp.23-36, 1994.

H. Nordmeyer, Patchy weed distribution and site-specific weed control in winter cereals, Precis. Agric, vol.7, pp.219-231, 2006.

C. Gutjahr, M. Sokefeld, and R. Gerhards, Evaluation of two patch spraying systems in winter wheat and maize, Weed Res, vol.52, pp.510-519, 2012.

M. Riemens, Developments in physical weed control in northwest Europe, vol.24, pp.24-26, 2016.

C. Zhang and J. M. Kovacs, The application of small unmanned aerial systems for precision agriculture: A review, Precis. Agric, vol.13, pp.693-712, 2012.

J. Rasmussen, J. Nielsen, F. Garcia-ruiz, S. Christensen, and J. C. Streibig, Potential uses of small unmanned aircraft systems (UAS) in weed research, Weed Res, vol.53, pp.242-248, 2013.

D. W. Lamb and R. B. Brown, Remote-sensing and mapping of weeds in crops, J. Agric. Eng. Res, vol.78, pp.117-125, 2001.

I. Herrmann, U. Shapira, S. Kinast, A. Karnieli, and D. Bonfil, Ground-level hyperspectral imagery for detecting weeds in wheat fields, Precis. Agric, vol.14, pp.637-659, 2013.

U. Shapira, I. Herrmann, A. Karnieli, and D. J. Bonfil, Field spectroscopy for weed detection in wheat and chickpea fields, Int. J. Remote Sens, vol.34, pp.6094-6108, 2013.

Y. Huang, M. A. Lee, S. J. Thomson, and K. N. Reddy, Ground-based hyperspectral remote sensing for weed management in crop production, Int. J. Agric. Biol. Eng, vol.9, p.98, 2016.

F. Feyaerts and L. Van-gool, Multi-spectral vision system for weed detection, Pattern Recognit. Lett, vol.22, pp.667-674, 2001.

E. Vrindts, J. De-baerdemaeker, and H. Ramon, Weed detection using canopy reflection, Precis. Agric, vol.3, pp.63-80, 2002.

K. Girma, J. Mosali, W. Raun, K. Freeman, K. Martin et al., Identification of optical spectral signatures for detecting cheat and ryegrass in winter wheat, Crop Sci, vol.45, pp.477-485, 2005.

G. A. Carter and A. K. Knapp, Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration, Am. J. Bot, vol.88, pp.677-684, 2001.

J. Torres-sánchez, F. López-granados, A. I. De-castro, and J. M. Peña-barragán, Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management, PLoS ONE, vol.8, 2013.

J. M. Peña, J. Torres-sánchez, A. Serrano-pérez, A. I. De-castro, and F. López-granados, Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution, Sensors, vol.15, pp.5609-5626, 2015.

P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, UAV-based crop and weed classification for smart farming, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2017.

M. Pérez-ortiz, J. M. Peña, P. A. Gutiérrez, J. Torres-sánchez, C. Hervás-martínez et al., Selecting patterns and features for between-and within-crop-row weed mapping using UAV-imagery, Expert Syst. Appl, vol.47, pp.85-94, 2016.

J. M. Peña, J. Torres-sánchez, A. I. De-castro, M. Kelly, and F. López-granados, Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images, PLoS ONE, vol.8, 2013.

F. López-granados, J. Torres-sánchez, A. Serrano-pérez, A. I. De-castro, F. J. Mesas-carrascosa et al., Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds, Precis. Agric, vol.17, pp.183-199, 2016.

J. Rouse, R. Haas, J. Schell, and D. Deering, Monitoring vegetation systems in the Great Plains with ERTS, Third Earth Resources Technology Satellite-1 Symposium, vol.I, p.309, 1974.

D. M. Woebbecke, G. E. Meyer, K. Von-bargen, and D. A. Mortensen, Color indices for weed identification under various soil, residue, and lighting conditions, Trans. ASAE, vol.38, pp.259-269, 1995.

J. Torres-sánchez, J. Peña, A. De-castro, and F. López-granados, Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV, Comput. Electron. Agric, vol.103, pp.104-113, 2014.

J. Torres-sánchez, F. López-granados, and J. M. Peña, An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops, Comput. Electron. Agric, vol.114, pp.43-52, 2015.

F. Ahmed, H. A. Al-mamun, A. S. Bari, E. Hossain, and P. Kwan, Classification of crops and weeds from digital images: A support vector machine approach, Crop Prot, vol.40, pp.98-104, 2012.

A. J. Pérez, F. López, J. V. Benlloch, and S. Christensen, Colour and shape analysis techniques for weed detection in cereal fields, Comput. Electron. Agric, vol.25, pp.197-212, 2000.

T. Burks, S. Shearer, and F. Payne, Classification of weed species using color texture features and discriminant analysis, Trans. ASAE, vol.43, p.441, 2000.

J. A. Marchant, Tracking of row structure in three crops using image analysis, Comput. Electron. Agric, vol.15, pp.161-179, 1996.

V. Leemans and M. F. Destain, Application of the hough transform for seed row localisation using machine vision, Biosyst. Eng, vol.94, pp.325-336, 2006.

N. D. Tillett, T. Hague, and S. J. Miles, Inter-row vision guidance for mechanical weed control in sugar beet, Comput. Electron. Agric, vol.33, pp.163-177, 2002.

T. Hague, N. D. Tillett, and H. Wheeler, Automated crop and weed monitoring in widely spaced cereals, Precis. Agric, vol.7, pp.21-32, 2006.

J. Vioix, J. Douzals, F. Truchetet, L. Assémat, and J. Guillemin, Spatial and spectral methods for weed detection and localization, EURASIP J. Adv. Signal Proc, vol.793080, 2002.

D. Gabor, Theory of communication. Part 1: The analysis of information, Electr. Eng. Part III Radio Commun. Eng. J. Inst, vol.93, pp.429-441, 1946.

J. Vioix, Conception et Réalisation d'un Dispositif D'imagerie Multispectrale Embarqué: Du Capteur aux Traitements Pour la Détection D'adventices, 2004.

C. Hung, Z. Xu, and S. Sukkarieh, Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV

M. Pérez-ortiz, P. A. Gutiérrez, J. M. Peña, J. Torres-sánchez, C. Hervás-martínez et al., An experimental comparison for the identification of weeds in sunflower crops via unmanned aerial vehicles and object-based analysis, Proceedings of the International Work-Conference on Artificial Neural Networks, pp.252-262, 2015.

J. Gao, W. Liao, D. Nuyttens, P. Lootens, J. Vangeyte et al., Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery, Int. J. Appl. Earth Obs. Geoinform, vol.67, pp.43-53, 2018.

A. De-castro, J. Torres-sánchez, J. Peña, F. Jiménez-brenes, O. Csillik et al., An automatic random forest-obia algorithm for early weed mapping between and within crop rows using UAV imagery, Remote Sens, vol.10, p.285, 2018.

M. Louargant, S. Villette, G. Jones, N. Vigneau, J. N. Paoli et al., Weed detection by UAV: Simulation of the impact of spectral mixing in multispectral images, Precis. Agric, vol.18, pp.932-951, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744077

U. Meier, Growth Stages of Mono-and Dicotyledonous Plants

-. Blackwell-wissenschafts and . Verlag, , 1997.

A. Verger, N. Vigneau, C. Chéron, J. Gilliot, A. Comar et al., Green area index from an unmanned aerial system over wheat and rapeseed crops, Remote Sens. Environ, vol.152, pp.654-664, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01192518

R. C. Gonzalez and R. E. Woods, Introduction to the fourier transform and the frequency domain, Digital Image Processing, pp.149-167, 2002.

C. J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ, vol.8, pp.127-150, 1979.

J. W. Rouse, . Jr, R. Haas, J. Schell, and D. Deering, Monitoring vegetation systems in the great plains with erts, Goddard Space Flight Center 3d ERTS-1 Symposium, vol.1, pp.309-317, 1974.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern, vol.9, pp.62-66, 1979.

P. V. Hough, Method and Means for Recognizing Complex Patterns, U.S. Patent, vol.3, p.69, 1962.

R. O. Duda and P. E. Hart, Use of the hough transformation to detect lines and curves in pictures, Commun. Assoc. Comput. Mach, vol.15, pp.11-15, 1972.

M. Pérez-ortiz, J. M. Peña, P. A. Gutiérrez, J. Torres-sánchez, C. Hervás-martínez et al., A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method, Appl. Soft Comput, vol.37, pp.533-544, 2015.

M. Louargant, Proxidétection des Adventices par Imagerie Aérienne: Vers un Service de Gestion par Drone, 2016.

G. Jones, C. Gée, and F. Truchetet, Assessment of an inter-row weed infestation rate on simulated agronomic images, Comput. Electron. Agric, vol.67, pp.43-50, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01826386

X. Hadoux, N. Gorretta, and G. Rabatel, Weeds-wheat discrimination using hyperspectral imagery, Proceedings of the International Conference on Agricultural Engineering, pp.8-12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00773551

T. Borregaard, H. Nielsen, L. Norgaard, and H. Have, Crop-weed discrimination by line imaging spectroscopy, J. Agric. Eng. Res, vol.75, pp.389-400, 2000.

A. Piron, V. Leemans, O. Kleynen, F. Lebeau, and M. F. Destain, Selection of the most efficient wavelength bands for discriminating weeds from crop, © 2018 by the authors. Licensee MDPI, vol.62, pp.141-148, 2008.