R. N. Strange and P. R. Scott, Plant disease: A threat to global food security, Annu. Rev. Phytopathol, vol.43, pp.83-116, 2005.

. Grapevine-flavescence-dorée, , p.20, 2017.

. Maladies-de-la-vigne, &. La-flavescence-dorée-aujourd, . Hui, and . Demain, , p.26, 2017.

P. C. Doraiswamy, S. Moulin, P. W. Cook, and A. Stern, Crop yield assessment for remote sensing, Photogramm. Eng. Remote Sens, vol.69, pp.665-674, 2003.

L. S. Galvao, D. A. Roberts, A. R. Formaggio, I. Numata, and F. M. Breunig, View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir hyperion data, Remote Sens. Environ, vol.113, pp.846-856, 2009.

E. J. Milton, M. E. Schaepman, K. Anderson, M. Kneubühler, and N. Fox, Progress in field spectroscopy, Remote Sens. Environ, vol.113, pp.92-109, 2009.

S. Sindhuja, A. Mishra, E. Reza, and C. Davis, A review of advanced techniques for detecting plant diseases, Comput. Electron. Agric, vol.72, pp.1-13, 2010.

E. Bauriegel, A. Giebel, M. Geyer, U. Schmidt, and W. B. Herppich, Early detection of Fusarium infection in wheat using hyper-spectral imaging, Comput. Electron. Agric, vol.75, pp.304-312, 2011.

A. K. Mahlein, U. Steiner, C. Hillnhutter, H. W. Dehne, and E. C. Oerke, Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases, Plant Methods, vol.8, pp.1-16, 2012.

F. Garcia-ruiz, S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen et al., Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees, Comput. Electron. Agric, vol.91, pp.106-115, 2013.

C. Hillnhütter, A. K. Mahlein, R. Sikora, and E. C. Oerke, Remote sensing to detect plant stress induced by heterodera schachtii and rhizoctonia solani in sugar beet fields, Field Crops Res, vol.122, pp.70-77, 2011.

D. Moshou, C. Bravo, R. Oberti, J. S. West, H. Ramon et al., Intelligent multisensor system for the detection and treatment of fungal diseases in arable crops, Biosyst. Eng, vol.108, pp.311-321, 2011.

J. A. Gamon and J. S. Surfus, Assessing leaf pigment content and activity with a reflectometer, New Phytol, vol.143, pp.105-117, 1999.

P. J. Pinter, J. L. Hatfield, J. S. Schepers, E. M. Barnes, M. S. Moran et al., Remote sensing for crop management, Photogramm. Eng. Remote Sens, vol.69, pp.647-664, 2003.

E. M. Abdel-rahman, F. B. Ahmed, . Van-den, M. Berg, and M. J. Way, Potential of spectroscopic data sets for sugarcane thrips (Fulmekiola serrata Kobus) damage detection, Int. J. Remote Sens, vol.31, pp.4199-4216, 2010.

C. M. Yang, Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance, Precis. Agric, vol.11, pp.61-81, 2010.

A. K. Mahlein, U. Steiner, H. W. Dehne, and E. C. Oerke, Spectral signatures of sugar beet leaves for the detection and differentiation of diseases, Precis. Agric, vol.11, pp.413-431, 2010.

H. Santoso, T. Gunawan, R. H. Jatmiko, W. Darmosarkoro, and B. Minasny, Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery, Precis. Agric, vol.12, pp.233-248, 2011.

R. Naidu, E. Perry, F. Pierce, and T. Mekuria, The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars, Comput. Electron. Agric, vol.66, pp.38-45, 2009.

J. Hou, L. Li, and J. He, Detection of grapevine leafroll disease based on 11-index imagery and ant colony clustering algorithm, Precis. Agric, vol.17, pp.488-505, 2016.

A. Carisse, R. Bacon, J. Lasnier, and W. Mcfadden-smith, Identification Guide to the Major Diseases of Grapes; Agriculture and Agri-Food Canada, 2006.

G. Flavescence, Aide au Diagnostic de la Flavescence Dorée, p.12, 2016.

J. Chuche and D. Thiéry, Biology and ecology of the flavescence dorée vector scaphoideus titanus: A review, Agron. Sustain. Dev, vol.34, pp.381-403, 2014.

O. Babatunde and L. Armstrong, A genetic algorithm-based feature selection, Int. J. Electron. Commun. Comput. Eng, vol.5, pp.2278-4209, 2014.

O. Babatunde, L. Armstrong, J. Leng, and D. Diepeveen, Zernike moments and genetic algorithm: Tutorial and application, Br. J. Math. Comput. Sci, vol.4, pp.2217-2236, 2014.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, 2008.

O. Marek, Introduction to Genetic Algorithms Czech Technical University, 1998.

G. A. Matlab and . Toolbox, , 2016.

C. J. Tucker, Red and photographic infrared linear combination for monitoring vegetation, Remote Sens. Environ, vol.8, pp.127-150, 1979.

C. J. Tucker, B. N. Holben, J. Elgin, H. James, I. Mcmurtrey et al., Remote sensing of total dry-matter accumulation in winter wheat, Remote Sens. Environ, vol.11, pp.171-189, 1981.

J. Penuelas, I. Filella, and J. A. Gamon, Assessment of photosynthetic radiation-use efficiency with spectral reflectance, New Phytol, vol.131, pp.291-296, 1995.

J. Penuelas, J. A. Gamon, A. L. Fredeen, J. Merino, and C. B. Field, Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves, Remote Sens. Environ, vol.48, pp.135-146, 1994.

G. M. Trotter, D. Whitehead, and E. J. Pinkney, The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants of varying foliar nitrogen contents, Int. J. Remote Sens, vol.23, pp.1207-1212, 2002.

A. Gitelson, N. Merzlyak, and O. B. Chivkunova, Optical properties and nondestructive estimation of anthocyanin content in plant leaves, Photochem. Photobiol, vol.74, pp.38-45, 2001.

G. A. Blackburn, Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves, Int. J. Remote Sens, vol.19, pp.657-675, 1998.

J. Penuelas and F. Baret, Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance, Photosynthetica, vol.31, pp.221-230, 1995.

R. Laudien, Development of a field and GIS-based management information system for the sugar beet industry, Proceedings of the 2005 EFITA WCCA Congress, pp.25-28, 2005.

A. D. Richardson, M. Aikens, G. P. Berlyn, and P. Marshall, Drought stress and paper birch (Betula papyrifera) seedlings: Effects of an organic biostimulant on plant health and stress tolerance, and detection of stress effects with instrument-based, non-invasive methods, J. Arboric, vol.30, pp.52-61, 2004.

A. Sims and A. Gamon, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ, vol.81, pp.337-354, 2002.

A. Apan, A. Held, S. Phinn, and J. Markley, Formulation and assessment of narrow-band vegetation indices from EO-1 hyperion imagery for discriminating sugarcane disease, Proceedings of the Spatial Sciences Institute Biennial Conference on Spatial Knowledge without Boundaries, pp.1-13, 2003.

L. Kooistra, R. S. Leuven, R. Wehrens, P. H. Nienhuis, and L. M. Buydens, A comparison of methods to relate grass reflectance to soil metal contamination, Int. J. Remote Sens, vol.24, pp.4995-5010, 2003.

A. Gitelson, J. Kaufman, and N. Merzlyak, Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ, vol.58, pp.289-298, 1996.

A. Gitelson and N. Merzlyak, Remote estimation of chlorophyll content in higher plant leaves, Int. J. Remote Sens, vol.18, pp.2691-2697, 1997.

R. Main, A. Cho, R. Mathieu, M. O'kennedy, A. Ramoelo et al., An investigation into robust spectral indices for leaf chlorophyll estimation, ISPRS J. Photogramm. Remote Sens, vol.66, pp.751-761, 2011.

P. J. Zarco-tejada, J. R. Miller, T. L. Noland, G. H. Mohammed, and P. H. Sampson, Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data, IEEE Trans. Geosci. Remote Sens, vol.39, pp.1491-1507, 2001.

E. Underwood, S. Ustin, and D. Dipietro, Mapping nonnative plants using hyperspectral imagery, Remote Sens. Environ, vol.86, pp.150-161, 2003.

G. Rondeaux, M. Steven, and F. Baret, Optimization of soil-adjusted vegetation indices. Remote Sens. Environ, vol.55, pp.95-107, 1996.

D. Haboudane, J. R. Miller, N. Tremblay, P. J. Zarco-tejada, and L. Dextraze, Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture, Remote Sens. Environ, vol.81, pp.416-426, 2002.

T. Rumpf, A. Mahlein, D. Dörschlag, and L. Plümer, Identification of combined vegetation indices for the early detection of plant diseases, Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, 2009.

T. Rumpf, A. Mahlein, U. Steiner, E. Oerke, H. Dehne et al., Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance, Comput. Electron. Agric, vol.74, pp.91-99, 2010.

, Support Vector Machines for Machine Learning, p.20, 2016.

A. Ben-hur and J. Weston, A User's Guide to Support Vector Machines, Data Min. Tech. Life Sci, vol.609, pp.223-239, 2010.

A. Shokoufeh, S. Hadi, R. Alireza, and E. Saeid, Feature selection using genetic algorithm for breast cancer diagnosis: Experiment on three different datasets, Iran. J. Basic Med. Sci, vol.19, pp.476-482, 2016.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, Feature selection using multi-objective genetic algorithms for handwritten digit recognition, Proceedings of the16th International Conference on Pattern Recognition, pp.11-15, 2002.

Z. Jingcheng, P. Ruiliang, H. Wenjiang, Y. Lin, L. Juhu et al., Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses, Field Crops Res, vol.134, pp.165-174, 2012.

W. Huang, D. W. Lamb, Z. Niu, Y. Zhang, L. Liu et al., Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging, Precis. Agric, vol.8, pp.187-197, 2007.

R. Devadas, D. W. Lamb, S. Simpfendorfer, and D. Backhouse, Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves, Precis. Agric, vol.10, pp.459-470, 2009.

P. J. Zarco-tejada, J. R. Miller, A. Morales, A. Berjon, and J. Aguera, Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops, Remote Sens. Environ, vol.90, pp.463-476, 2004.

E. S. Khawas and E. M. Khawas, Interactions between Aphis gossypii (Glov.) and the common predators in eggplant and squash fields, with evaluating the physiological and biochemical aspects of biotic stress induced by two different aphid species, infesting squash and cabbage plants, Aust. J. Basic Appl. Sci, vol.2, pp.183-193, 2008.

N. Murugesan and A. Kavitha, Host plant resistance in cotton accessions to the leaf hopper Amrasca devastans (Distant), J. Biopestic, vol.3, pp.526-533, 2010.

A. Gitelson and N. Merzlyak, Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll, J. Plant Physiol, vol.148, pp.494-500, 1996.

H. Geospatial, Dry or Senescent Carbon, p.28, 2017.

H. Ren, G. Zhou, F. Zhang, and X. Zhang, Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia, Chin. Sci. Bull, vol.57, pp.1716-1722, 2012.

M. Mirik, G. J. Michels, . Jr, S. Kassymzhanova-mirik, N. C. Elliott et al., Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat, Comput. Electron. Agric, vol.51, pp.86-98, 2006.

M. Prabhakar, Y. G. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi et al., Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae), Comput. Electron. Agric, vol.79, pp.189-198, 2011.

D. Ashourloo, M. R. Mobasheri, and A. Huete, Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina), vol.6, pp.4723-4740, 2014.

A. K. Mahlein, T. Rumpf, P. Welke, H. W. Dehne, L. Plümer et al., Development of spectral indices for detecting and identifying plant diseases, Remote Sens. Environ, vol.128, 2013.

P. J. Zarco-tejada, S. L. Ustin, and M. L. Whiting, Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery, Agron. J, vol.97, pp.641-653, 2003.